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We find that some equilibrium systems and their nonequilibrium counterparts actually show the same jerky
response or avalanche behavior on many scales in response to slowly changing external conditions. In other
words, their static and dynamic avalanches behave statistically the same. This suggests that their critical
properties are much more generally applicable than previously assumed. In this case, systems far from equi-
librium may be used to predict equilibrium critical behavior and vice versa.
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Avalanche behavior in diverse dynamical systems has
been extensively studied in the past decade �1–4�. In those
systems, there are often a large number of metastable states.
When pushed by an external driving field, those systems
shift from one metastable state to another responding with
collective behavior in the form of avalanches. A dynamic
avalanche is just the rearrangement of the system configura-
tion, which connects two different metastable states at two
slightly different external fields. In experiments, avalanches
are often associated with crackling noise as measured in
acoustic emission and Barkhausen noise experiments �2,3�.
So far, avalanche behavior in equilibrium systems, i.e., static
“avalanche,” has rarely been studied due to computational
complexity. With a static avalanche we refer to a configura-
tion rearrangement connecting two different neighboring
ground states at two slightly different external fields.

Generally, equilibrium systems are believed to be com-
pletely different from nonequilibrium ones simply because
the underlying physics is so different. A natural question
arises: Do static and dynamic avalanches have the same criti-
cal behavior? Answering this basic question would be crucial
to understand whether there are any possible deep connec-
tions between equilibrium systems and their nonequilibrium
counterparts.

In this paper, we show compelling evidence that static and
dynamic avalanches have the same critical behavior in the
zero-temperature random-field Ising model �zt-RFIM�. This
particular model is chosen for two reasons. First, there is a
related highly controversial question in this model, i.e.,
whether the equilibrium and nonequilibrium disorder-
induced phase transitions belong to the same universality
class. Second, both static and dynamic avalanches can be
clearly identified and calculated within this model. We find
that all tested universal scaling functions and corresponding
critical exponents coincide for static and dynamic ava-
lanches. Our findings indicate that generally equilibrium sys-
tems and their nonequilibrium counterparts may have deep
connections �5,6�.

As a prototypical model for disordered magnets, the
RFIM has been intensely studied �7�. Its Hamiltonian is
given by H=−J��i,j�sisj −�i�H+hi�si where the Ising spins
si= �1 sit on a d-dimensional hypercubic lattice with peri-
odic boundary conditions. The spins interact ferromagneti-
cally with their nearest neighbors with strength J and expe-
rience a uniform external field H and a quenched local
random field hi. Usually, the local fields are chosen from a

Gaussian distribution ��h� with mean 0 and standard devia-
tion R. R is called the disorder parameter. In equilibrium, it is
generally believed that in d�2 the transition between the
ordered �ferromagnetic� and disordered �paramagnetic�
phases is continuous and controlled by a stable zero-
temperature fixed point �8�. Therefore, one can set tempera-
ture T=0 and tune disorder R to study the equilibrium
disorder-induced phase transition �DIPT� undergone by the
ground-state properties. In nonequilibrium, the zt-RFIM has
been very successful in explaining dynamic avalanches and
crackling noise observed in magnets �9–11�. The key result is
that there is a nonequilibrium DIPT associated with the hys-
teretic behavior. Based on the similarities of some critical
exponents, it has been conjectured that the equilibrium and
nonequilibrium DIPT may belong to the same universality
class. But this has been highly controversial due to the lack
of compelling evidence �5,6,12,13�. Comparing the critical
behavior of static and dynamic avalanches is important and
necessary to answer this question.

An avalanche in the RFIM refers to the flip of neighbor-
ing spins during the magnetization process corresponding to
a jump in the magnetization curve M�H�. To identify ava-
lanches, we increase the external field H from −� to � adia-
batically slowly; i.e., H is kept constant during the propaga-
tion of an avalanche. Then, a static �dynamic� avalanche
connects two nearest ground �metastable� states along the
equilibrium �nonequilibrium� M�H� curve at zero tempera-
ture. In equilibrium, the ground-state problem of the RFIM
can be mapped onto the min-cut/max-flow problem of a net-
work and solved via the so-called push-relabel algorithm
�14,15�. An efficient linear interpolation scheme is then used
to find steps by narrowing down the H range where static
avalanches occur �16�. In nonequilibrium, we use the single-
spin-flip dynamics to calculate the metastable state: each
spin flips deterministically when its effective local field hi

eff

=J� jsj +hi+H changes sign �9,11�. Due to the nearest-
neighbor interaction, a flipped spin will push a neighbor to
flip, which in turn might push another neighbor, and so on,
thereby generating a dynamic avalanche.

To study whether the shape of the random-field
distribution would affect the avalanche behavior, we consider
four different types of ��h�’s: �1� Gaussian: �G�h�
= 1

�2�R
exp�− h2

2R2 �; �2� Lorentzian: �L�h�= 1
2�

R
h2+�R/2�2 ; �3� para-

bolic: �P�h�= R2−h2

4R3/3 for h� �−R ,R� and 0 else; �4� uniform:
�U�h�= 1

2R for h� �−R ,R� and 0 else. In all cases, ��h� is
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symmetric around h=0 and the generalized “width” R will
be called the disorder parameter.

Figure 1 shows the M�H� curves and corresponding ava-
lanches occurring during the magnetization processes at dif-
ferent disorders in both equilibrium ��d�–�f�� and nonequilib-
rium ��a�–�c��. For R�Rc ��a� and �d��, most spins tend to
flip collectively in a system spanning avalanche seen as a
macroscopic jump in the magnetization curve. For R�Rc
��c� and �f��, spins tend to flip individually and result in
many microscopic avalanches and a macroscopically smooth
magnetization curve. For R	Rc ��b� and �e��, jumps �ava-
lanches� of all sizes are seen in the magnetization curve.
Qualitatively, we find that static and dynamic avalanches
show similar disorder-dependent behavior.

To quantitatively study the similarity of static and dy-
namic avalanches, we first study the avalanche size distribu-
tion integrated over the external field �11�. Near the critical
disorder Rc, its scaling form can be written as

Dint�S,R� 	 S−��+	
��D�
int�S	
r
� , �1�

where S is the avalanche size, i.e., the number of spins par-
ticipating in an avalanche, � refers to the sign of the reduced
disorder r= �Rc−R� /R, 	 gives the scaling of the largest ava-
lanche size Smax	
r
−1/	, and 
 and � give the singularities
of M�H� near the critical point �Hc ,Rc�. Here, the critical
field Hc is defined to be the field where the slope of
M�H� goes to �. In nonequilibrium, Dint�S ,R� for Gaussian
��h� has been studied extensively. The critical exponents
��+	
��=2.03�0.03, 	=0.24�0.02, and the universal
scaling function D−

int�X�=e−0.789X1/	
�0.021+0.002X+0.531X2

−0.266X3+0.261X4� were obtained from scaling collapses of
Dint�S ,R� at different disorders �11�.

Figure 2�a� shows that for Gaussian, Lorentzian, and para-
bolic ��h�’s, and for both static and dynamic avalanches at
different disorders, with the same pair of critical exponents:
��+	
��=2.03 and 	=0.24, 24 Dint�S ,R� curves collapse
onto a single one. The universality that the three different
��h�’s show the same avalanche behavior is not a surprise at
all. A renormalization group �RG� analysis has shown that, at
least in nonequilibrium, what matters is just ���0�, i.e., the
second derivative of ��h� at h=0 �10�. It is easy to check that
Gaussian, Lorentzian, and parabolic ��h�’s all have ���0�	
−R3. Therefore their universal behaviors agree, as expected.
Figure 2�b� shows that for uniform ��h�, for both static and
dynamic avalanches at different disorders, eight Dint�S ,R�
curves collapse onto a single one, with critical exponents:
��+	
��=2.08�0.02 and 	=0.52�0.03. Note that: �1� The
critical exponents, especially 	, are significantly different
from those of the above three kinds of ��h�’s. �2� The scaling
function has a significantly different shape from that ob-
served in Fig. 2�a�. These two findings are consistent with
the RG analysis mentioned above because for a uniform
��h�, ���0�=0 is independent of R and is qualitatively differ-
ent from the other three distributions.

The most surprising result about Fig. 2 is that the critical
exponents and scaling functions for static and dynamic ava-
lanches match for any ��h�. This strongly indicates that the
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FIG. 1. �Color online� Disorder-dependent avalanche behavior
in RFIM. Main panel: magnetization curves in equilibrium �d,e,f�
and nonequilibrium �a,b,c� below, near, and above the critical dis-
order Rc. Insets: cross sections of three-dimensional �3D� systems
showing all the avalanches �denoted by different colors� occurring
during those magnetization processes. The calculation is done on
3D Gaussian zt-RFIM with system size 643. Nonequilibrium: �a�
R=2.0, �b� R=2.224, and �c� R=2.6. Equilibrium: �d� R=2.25, �e�
R=2.45, and �f� R=2.9. Note that Rc

neq=2.16�0.03 and Rc
eq

=2.28�0.01 for 3D Gaussian RFIM �11,17�.
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FIG. 2. �Color online� Scaling functions of integrated avalanche
size distributions. The original Dint�S ,R� curves for static and dy-
namic avalanches at different disorders and different ��h�’s are cal-
culated in 3D with system size 643 and are averaged up to 100
initial random-field configurations. In the legend, the subscripts
stand for equilibrium �e� or nonequilibrium �n� and the type of ��h�:
Gaussian �g�, Lorentzian �l�, parabolic �p�, and uniform �u�. �a� For
Gaussian, Lorentzian, and parabolic ��h�’s, using critical exponents
��+	
��=2.03 and 	=0.24, 24 curves collapse onto each other, up
to nonuniversal critical disorders �Rc

nG=2.16, Rc
eG=2.29; Rc

nL=1.92,
Rc

eL=2.08; Rc
nP=4.84, Rc

eP=5.0� and overall scale factors. The thick
black curve through the collapse is the universal scaling function
D−

int�X� of nonequilibrium Gaussian RFIM �11�. �b� For uniform
��h�, eight curves collapse onto each other, up to nonuniversal criti-
cal disorders �Rc

nU=4.64, Rc
eU=4.46� and overall scale factors. The

collapse yields critical disorders ��+	
��=2.08�0.02 and 	
=0.52�0.03. Both the critical exponents and the scaling function
are different from those of the Gaussian ��h�.
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equilibrium and nonequilibrium RFIM behave the same near
their corresponding critical points.

To check whether this is just a coincidence, we make
another independent test by studying the avalanche correla-
tion function, which measures the probability that a distance
x between any two flipping spins occurs in the same ava-
lanche �11�. Near the critical disorder Rc, the scaling form of
the avalanche correlation function integrated over H can be
written as

Gint�x,R� 	
1

xd+
/�G��x
r
�� , �2�

with � the correlation length exponent and d the dimension
�10�. In nonequilibrium, the quantity Gint�x ,R� for the Gauss-
ian ��h� has been studied extensively, where d+
 /�
=3.07�0.30 and �=1.37�0.18 were obtained from scaling
collapses of Gint�x ,R� at different disorders �11�. Here, in
Fig. 3�a�, we show that for Gaussian, Lorentzian, and para-
bolic ��h�’s, and for both static and dynamic avalanches at
different disorders, with the same pair of critical exponents:
d+
 /�=3.07 and �=1.37, 24 Gint�x ,R� curves collapse onto
a single one. Figure 3�b� shows that for uniform ��h� and for
both static and dynamic avalanches at different disorders,
eight Gint�x ,R� curves collapse onto a single one, with criti-
cal exponents: d+
 /�=3.0�0.3 and �=0.8�0.2. On one
hand, both the critical exponents and the scaling function for
the uniform ��h� are different from those of the Gaussian
��h�. On the other hand, both the critical exponents and scal-
ing functions for static and dynamic avalanches match for
any ��h�. These results are completely consistent with what
we found in avalanche size distributions.

Moreover, in a separate work, for the Gaussian ��h�, we
have shown that static and dynamic avalanches have surpris-
ingly similar spatial structures with the same fractal dimen-
sions, anisotropy measures, and associated universal scaling
functions �18�. More interestingly, we notice that the equilib-
rium and nonequilibrium DIPTs themselves show surprising
similarity: �1� they share the same no-passing rule: at T=0,
flipped spins can never flip back as the magnetic field H is
swept monotonically �9,19�. �2� In mean-field theory, they
have the same thermodynamic critical exponents �9,20�, the
same avalanche critical exponents �18�, and the same expo-
nent relations �10�. �3� RG calculations show that the 6−

expansion for the nonequilibrium critical exponents maps to
all orders in 
 onto the controversial equilibrium ones: the
temperature dependence is irrelevant in the equilibrium
RFIM and the time dependence is irrelevant in the zero-
temperature nonequilibrium RFIM leaving us with the same
starting point for the calculation in both cases �10�. All these
evidences in favor of universality corroborate our findings
here.

To discuss the effect of dynamics on the critical behavior
of avalanches, a general k-spin-flip dynamics �with k
=1,2 , . . . ,�� has been introduced �6�. It is defined such that
all the states connected by avalanches are k-spin-flip meta-
stable states whose energy cannot be lowered by the flip of
any subset of 1 ,2 , . . . ,k spins �6,21�. The case k=1 just cor-
responds to the single-spin-flip dynamics used in our non-
equilibrium calculations. The case k=� corresponds to the
ground-state evolution dynamics in our equilibrium calcula-
tions. It has been found that the change in dynamics from
k=1 to k=2 will not alter the critical behavior of the dy-
namic avalanches �22�. Together with our finding, i.e., k=1
and k=� give the same avalanche behavior, we suggest that
avalanches associated with the whole series of k-spin-flip
dynamics �with k=1,2 , . . . ,�� would have the same critical
behavior. The k-spin-flip dynamics is quite general but it
definitely cannot encompass all kinds of dynamics, e.g., the
demagnetization dynamics associated with the demagnetiza-
tion curve, which is obtained by applying an oscillating ex-

FIG. 4. �Color online� Schematic phase diagram of zt-RFIM
with k-spin-flip dynamics and demagnetization dynamics. Dashed
lines stand for the first-order phase transitions occurring at the criti-
cal field Hc. Note that for both demagnetization dynamics and
ground-state evolution �k=��, Hc=0 due to symmetry. �Inset� Sche-
matic M�H� curves associated with different dynamics.
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FIG. 3. �Color online� Scaling functions of integrated avalanche
correlation function. The original Gint�x ,R� curves for static and
dynamic avalanches at different disorders and different ��h�’s are
calculated in 3D with system size 643 and are averaged up to 100
initial random-field configurations. �a� For Gaussian, Lorentzian,
and parabolic ��h�’s, 24 curves collapse onto each other, using d
+
 /�=3.07 and �=1.37 �11�. �b� For uniform ��h�, eight curves
collapse onto each other with d+
 /�=3.0�0.3 and �=0.8�0.2.
Note that those collapses are up to the same critical disorders as
used in Fig. 2.
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ternal field with very slowly decreasing amplitude. Previous
studies for Gaussian ��h� showed that there are two very
interesting results. First, the avalanches associated with the
demagnetization curve are found �within numerical error
bars� to display the same critical exponents and scaling func-
tions as the avalanches associated with the saturation hyster-
esis loop �with k=1� �23�. Second, the demagnetized state
and ground state show similarity near their corresponding
critical disorders: the critical exponents and scaling function
associated with the M�R� curve coincide �13�.

Considering all the findings, we suggest that all the dif-
ferent dynamics yield the same scaling behavior of
avalanches—an unexpected universality, see Fig. 4. It would
be very interesting to numerically test this universality in
other disordered systems, especially for those systems with

frustrations where the no-passing rule is broken. We suspect
that a necessary condition for equilibrium and nonequilib-
rium critical behavior to scale in the same way is that the
scaling behavior is dominated in both cases by a zero-
temperature fixed point �24�. For example, for the random-
bond Ising model, which has a nontrivial finite-temperature
fixed point �25�, the equilibrium and nonequilibrium critical
behavior are different �10�.
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